Attributing Learned Concepts in Neural Networks to Training Data

Nicholas Konz, Charles Godfrey, Madelyn Shapiro, Jonathan Tu, Henry Kvinge, Davis Brown

Pacific Northwest National Laboratory, Duke University, Thomson Reuters Labs, University of Washington

Why care?

Models seem to represent their important hidden features linearly as directions (the 'linear representation hypothesis').

We measure these *concepts* with linear probes, and ask the questions: 1. Which examples in the model's training data were important for learning these concepts?

2. *How robust is the formation of these concepts?*

We approach this by **attributing concept probe predictions back to the base model's training set**.

We perform data attribution for learned hidden-layer concept directions.

Concept learning is convergent: robust to training example removal, and consistent across different training runs.

Concepts of Interest

• Snakes (ImageNet snake classes)

Schematic of our approach for hidden feature attribution

Find concept directions for $f_{\leq i}$

1.Train *N* models with different random seeds on the training set.

2.Choose a hidden layer *i*, append a probing classifier *g* to its output, freeze the weights of $g \circ f_{\leq i}$ on the concept dataset.

3.Calculate attributions (with e.g., TRAK) for $g \circ f_{\leq i}$ on elements of the test set in terms of the original training data. Aggregate across fixed layers and concepts.

Main Results

Training set attributions for concept learning

Robustness of concept learning

Concept presence at different network layers

to training exemplar removal concept: high-low frequency J. concept score for *X*_{*tr*, *j*} 10 layer1.0.conv2 layer1 avg. ' attrib. s layer2 layer3 10^1 10^2 10^3 10^4 10^{5} 10^{0} top-scoring training point index *i* J. concept score for $X_{tr,i}$ 10_{-5} 10_{-2} concept: snakes layer1.0.conv2 layer1 avg. (attrib. sc layer2 10^{-8} laver3 10³ 10^{4} 10^{2} 10⁵ 10^{1} 10^{0} top-scoring training point index *i* concept: high-low frequency concept: snakes 1.01.0Т Т - 10000 - 10000 0.9 0.9 concept detection validation accuracy ^{2.0} ^{2.0} ^{8.0} 1000 1000 100 - 100 0.8 0.7 0.6 0.5 0.4 0.40.3 10^{2} 10² 10^{0} 10^{1} 10^{0} 10^{1} sparsity *k* sparsity k Top T concept-attributed training examples removed 12/6/23

www.**pnnl**.gov