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Why care? We perform data attribution

Models seem to represent their important hidden features linearly as directions for learned hidden-| ayer
(the ‘linear representation hypothesis’). concept directions.

We measure these concepts with linear probes, and ask the questions: . .
1. Which examples in the model’s training data were important for learning Conce pt learni ng iIs

these concepts? convergent: robust to
2. How robust is the formation of these concepts? traini ng exam ple removal,
and consistent across

We approach this by attributing concept probe predictions back to the base . = =
e ¢ 5 EONEEPT PIOREP different training runs.

model’s training set.

Concepts of Interest

* Snakes (ImageNet snake classes)

* High-Low Frequency:
Transitions from high to low
spatial frequencies

Schematic of our approach for hidden feature attribution
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1.Train V models with different random seeds on the training set.
2.Choose a hidden layer i, append a probing classifier g to its output, freeze the weights of /-;, and train
o /., on the concept dataset.
3.Calculate attributions (with e.g., TRAK) for 7 o /., on elements of the test set in terms of the original
training data. Aggregate across fixed layers and concepts.

Main Results
Training set attributions for concept learning Robustness of concept learning
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Concept presence at different network layers
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