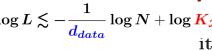
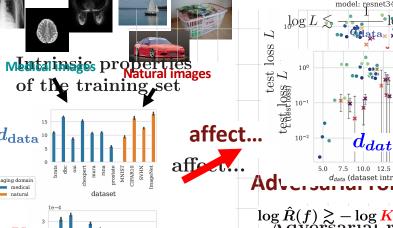
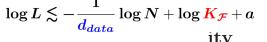


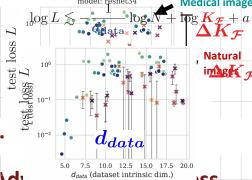
The Effect of Intrinsic Dataset Properties on Generalization: Unraveling Learning Differences Between Natural and Medical Images

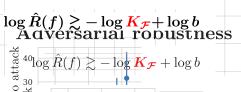

Nicholas Konz, Maciej A. Mazurowski

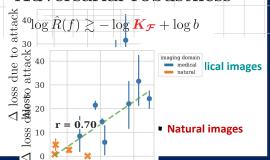

Q: How and why do neural networks learn differently from medical vs. natural images?

A: Measurable intrinsic properties of the training set affect generalization behavior of the trained model!

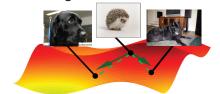

Intrinsic properties of the training set

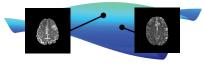






Generalization ability




Background

- Generalization error of a trained network scales with the intrinsic manifold dim. of the training set.
- But the *steepness* of this curve empirically differs for medical vs. natural image models! Why??
- Similar discrepancies found for adversarial attack susceptibility...
- Our goal: understand and model this from a scientific perspective.

Natural Image Manifolds

vs. Medical Image Manifolds

label sharpness: Describes how

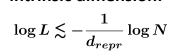
similar images can be while still

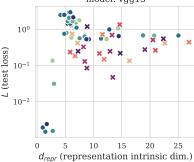
being from different classes.

How do they differ?

Modified from Buchanan et al.,

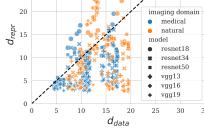
Main Contributions


Establish generalization and adversarial robustness scaling laws (left) that depend on measurable intrinsic dataset properties: intrinsic dimension and *label sharpness*, a metric we introduce:


$$\hat{K}_{\mathcal{F}} := \max_{j,k} \left(rac{|y_j - y_k|}{||x_j - x_k||}
ight)$$

- We empirically validate the scaling laws on 6 models, 11 datasets, and 7 training set sizes.
- Our results show that **medical images** typically have much higher label sharpness, leading to the generalization discrepancy. This also makes them more susceptible to adversarial attack!
- Overall, we provide and validate the first theoretical models for the gap in deep learning behavior between natural and medical images.

Additional Results


Generalization scaling law with respect to *learned* representation intrinsic dimension:

We show that dataset intrinsic dimension bounds learned representation intrinsic dimension:

 $d_{repr} \lesssim d_{data}$

Want to easily measure these properties of your own datasets?

Check out our code at github.com/mazurowskilab/intrinsic-properties:

Contact me: @nick konz nicholas.konz@duke.edu

