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Introduction

I The image acquisition parameters (IAPs, see Table 1) used to take MRIs are central to defining their
appearance.

I Deep neural nets trained on MRIs taken with certain IAPs may not generalize well to images from other
IAPs: a domain shift problem.

I Can we train a neural network to predict the IAPs that generated an image, using only the
image?

I This would allow us to predict an image’s domain to determine if it’s applicable to some downstream
model, and could also be used for domain adaptation/image harmonization, etc.

Contributions

1. We introduce a neural network model for predicting many categorical and continuous IAPs of
an MR image in one forward pass, trained via multi-task learning.

2. We show that our model predicts many complex IAPs of MRI scans of new patients to high
accuracy, over a large test set of MR slice images. We predict six out of ten categorical IAPs to > 97%
top-1 accuracy on the test set, and all but two with > 95% top-2 accuracy.

3. We show that our method achieves good accuracy (> 84% top-1 accuracy, > 95% top-2) on IAPs
that are more challenging to predict, such as contrast agent type.

4. We demonstrate a realistic application of our model: using it to sort new unlabeled data into different
domains to determine which models to apply to the data for a downstream task.

IAP Prediction Network

I Task: simultaneously predict K categorical IAPs and M continuous IAPs of an MR image.
. K classification tasks and M regression tasks.

I Model: ResNet-18 encoder with final fully-connected layer modified to predict all K + M IAPs.
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Figure 1: Our model. The training pipeline is in dashed lines.

I Trained via a multi-task learning loss,

LIAP = λ
K∑

k=1

LCE(ŷk, yk) + η
M∑

m=1

LMSE(ŷm, ym), (1)

with:
. LCE: cross-entropy loss of predicted class ŷk and true class yk for the kth categorical IAP.
. LMSE: MSE loss of predicted value ŷm and true value ym for the mth continuous IAP.
. Hyperparameters: λ = η = 1

Dataset

I We use the Duke Breast Cancer (DBC) MRI dataset [1]: contains DCE-MRIs of 922 biopsy-confirmed
breast cancer patients.

I Each scan has values for 12 categorical and continuous IAPs (Table 1).

I We use a subset of 14, 000 randomly sampled 2D slices from 3D fat-saturated scan volumes, split into
train/validation/test sets as 9, 952/2, 064/1, 984, with no patient appearing in multiple splits.

Experimental Settings

I Trained with a batch size of 512 for 100 epochs, using Adam with a learning rate of 0.001 and weight
decay strength of 0.0001, on a 48 GB NVIDIA A6000.

I Images resized to 224× 224 and normalized to [0, 255]. Final model chosen based on validation set
performance.

Results: Our Model’s IAP Prediction Performance on the Test Set

Table 1: Quantitative Summary: IAP Prediction Performance on the Test Set. ∗ denotes prediction MSEs for models
with categorical IAPs trained instead as continuous.

MRI acquisition
parameter (IAP)

No.
categories

Examples
Top-1 pred.

acc. (%)
Top-2 pred.

acc. (%)
Pred.
MSE

1
Scanner
Manufacturer

2 GE, Siemens 99.74 N/A N/A

2
Scanner
Model

8
Avanto,
Signa HDx

97.78 99.29 N/A

3 Scan Options 9
PFP/FS,
PFP/SFS

99.40 99.60 N/A

4 Field Strength 5 1.5 T, 3 T 98.19 99.70 N/A

5 Patient Position 2 FFP, HFP 97.73 N/A N/A

6
Contrast
Agent Type

6
Gadavist,
MultiHance

84.73 95.46 N/A

7
Acquisition
Matrix

10
448× 448,
384× 360

91.53 99.14 N/A

8
Slice
Thickness

21
1.3 mm,
2 mm

76.66 87.05 0.157 mm∗

9 Flip Angle 4 10◦, 12◦ 99.65 99.75 0.073◦∗

10 FOV Computed 27
320 cm,
360 cm

51.21 69.30 164 cm∗

11
Repetition
Time (TR)

N/A
4.27 ms,
5.34 ms

N/A N/A 0.0305 ms

12 Echo Time (TE) N/A
2.4 ms,
1.5 ms

N/A N/A 0.0116 ms

Figure 2: Example Predictions of Acquisition Parameters for MRIs in the Test Set. The symbols “X” and “×” indicate

correct and incorrect predictions, respectively (TE and TR predictions are treated as “correct” if the relative error is < 2%).

Predicted IAPs

Manufacturer:
Model:
Scan Options:
Patient Position:
Field Strength:
Contrast Agent:
Acquisition Matrix:
Slice Thickness:
Flip Angle:
FOV Computed:
TE (Echo Time):
TR (Rep. Time):

GE 
Signa HDxt 
1 
FFP 
3 T 
MULTIHANCE 
384 X 384 
1.2 mm 
10 deg 
340 cm 
2.537 ms 
5.963 ms 

SIEMENS 
Avanto 
5 
FFP 
1.5 T 
MULTIHANCE 
448 X 448 
2 mm 
10 deg 
340 cm 
1.304 ms 
4.415 ms 

GE 
Signa HDxt 
1 
FFP 
3 T 
MAGNEVIST 
350 X 350 
2 mm 
10 deg 
340 cm 
2.382 ms 
5.686 ms 

GE 
SIGNA HDx 
2 
FFP 
1.5 T 
MAGNEVIST 
340 X 340 
2 mm 
10 deg 
320 cm 
2.373 ms 
5.171 ms 

SIEMENS 
Avanto 
5 
FFP 
1.5 T 
MAGNEVIST 
448 X 448 
1.1 mm 
12 deg 
360 cm 
1.324 ms 
4.197 ms 

SIEMENS 
Skyra 
6 
FFP 
3 T 
MULTIHANCE 
448 X 381 
2 mm 
10 deg 
350 cm 
1.445 ms 
3.722 ms 

Application: Sorting Unlabeled Data into Domains for Downstream Task Model Selection

I Consider two cancer classification networks trained on data from different scanner manufacturers:
GE and Siemens.

I How can we tell which network to use on new breast MRIs from unknown scanners?

I We use our IAP prediction model on the new images to determine which scanner type they were taken
with.
. Doing so greatly improves cancer classification performance on an unlabeled, shuffled test

set of both GE and Siemens images, rather than just guessing the scanner type (table below).

Table 2: Using our IAP prediction model to sort unlabeled data for cancer classification model selection. Values shown
are cancer classification accuracies on the test set of GE and Siemens images, unless otherwise stated.

GE Model
Siemens
Model

GE Model
(on only GE
images)

Siemens Model
(on only Siemens
images)

Model chosen
according to
predicted IAPs

Model chosen
according to
true IAPs

68.82% 56.50% 80.37% 71.75% 76.95% 77.43%

Future Work

I Use our model to guide image translation/harmonization networks, as an “IAP discriminator”.

I Use our model to probe the relationship between IAPs, image quality, and domain.

I Extend our model to full 3D MR volumes using 2.5D or 3D CNNs.
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