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Abstract and Introduction

Rigorously fitting a two dimensional statistical model to data that has intrinsic uncertainties (error
bars) in both the independent variable and the dependent variable is a daunting task, especially
if the data also has extrinsic uncertainty that cannot be fully accounted for by the error bars.
While there are a few prescriptions that tackle this problem, they each have their downfalls. Here,
we present a new statistic (described as the Trotter, Reichart, Konz statistic, or TRK) derived
from basic principles that is advantageous towards model-fitting in this “worst-case data” scenario,
especially when compared to other methods. The TRK statistic is fully invertible, but not scalable.
However, an iterative algorithm is presented to obtain the optimal scale for the given data set
which will give the best fit, using a nested downhill simplex method. To fit the model to the data,
a Markov Chain Monte Carlo (MCMC) method is used to generate not just the best-fit values
of the model parameters, but the full posterior probability distributions of them as well, including
extrinsic scatter. The statistic is applicable to practically any data-driven field, for any custom model
function, and can even be generalized to an arbitrary number of independent variables within the
model.

A Quick Overview of Bayesian Statistics

The central principle of the Bayesian approach to statistics and probability (as opposed to the
frequentist approach) is Bayes’ theorem

p(H|DI) ∝ L(D|H)p(H), (1)

where (excluding a normalization constant) p(H|DI) is known as the posterior probability density
function, L(D|HI) is called the likelihood function, and p(H|I) is known as the prior probability
density function. Given a set of observed data D and a set of parameters describing a hypothetical
model H , the likelihood function L describes the conditional probability of obtaining the observed
D given some model parameters H and the prior describes how any pre-existing information about
the model (before data collection) affects or constrains the values of the model parameters.

Fitting a Model To “Worst Case” Data

In the most general case, a set of N two-dimensional datapoints {xn, yn} (with n = 1, 2 . . . N) can
have both intrinsic uncertainties in both directions (i.e. error bars) for each datapoint {σx,n, σy,n},
and extrinsic scatter, or “slop” for the data set {σx, σy} (that must be parameterized and fit to as
part of the model). In order to fit a model to such a dataset, we need to quantify the goodness
of fit of some model to a dataset, including uncertainties. Such a model is not just a curve, but
a probability distribution: technically a relative probability distribution g(x, y) along the model
curve yc(x;ϑm), convolved with a two-dimensional Gaussian probability distribution G(x, y) that
is parameterized with the slop parameters σx and σy, where ϑm is the set of M model parameters.
For each datapoint we also construct a convolved error ellipse with axes defined by the parameters

Σx,n =
√
σ2
x,n + σ2

x and Σy,n =
√
σ2
y,n + σ2

y (see Fig.1, left).

In order to begin constructing the likelihood function, we must first determine the (joint) posterior
distribution for a single datapoint, pn(ϑm, σx, σy|xn, yn, σx,n, σy,n). Each pn is found by convolv-

ing the intrinsic and observed model distributions for the nth datapoint, the latter of which requires
convolving g(x, y) and G(x, y) with the model distribution. The model curve itself can be repre-
sented as a one-dimensional Dirac delta function in some arbitrary rotated coordinate system with
axes (un, vn), which can be different for each datapoint. In total, the expression for pn includes four
complicated, usually non-analytic integrals (see [5] for the explicit details). As such, three different,
reasonable approximations must be made to make this computationally feasible, one of them being
that the model curve yc is approximately linear on the scale of the convolved error ellipse of the
datapoint. We center this linear approximation of yc at the point (xt,n, yt,n) where the ellipse is
tangent to the model curve, with slope mt,n so that yc(x) ≈ yt,n+mt,n(x− xt,n) (see Fig. 1 left).
Following this, the tangent point can be found implicitly with

(yc(x)− yn)
dyc(x;ϑm)

dx
Σ2
x,n + (x− xn)Σ2

y,n = 0, (2)

(in practice with a two-point Newton-Raphson root finder, see [4]). Taking into account the ap-
proximations, we finally arrive at a computationally reasonable expression for pn,

pn(ϑm, σx, σy|xn, yn, σx,n, σy,n) ≈ f (xn, yn)g(xn, yn)
dun
dx

Gn (yn) , (3)

where Gn(yn) is a Gaussian distribution of yn with mean yt,n + mt,n(xn − xt,n) and deviation√
m2
t,nΣ2

x,n + Σ2
y,n, and f (xn, yn) represents the efficiency at which the data sampes the model

distribution (see [5]).

The TRK Statistic

Recall from the previous section that the definition of pn (3) utilizes some chosen rotated coordinate system
(un, vn) to define the one-dimensional model curve. We define the TRK statistic such that for some nth

datapoint, the un axis is perpendicular to the line segment connecting the datapoint (xn, yn) (see Fig. 1
left). This choice ends up being analogous to a one-dimension χ2 statistic along the direction of vn [5]. The
TRK likelihood function—the central part of this statistic—which is the product of all N posterior distribution
functions pn, can then be defined as

LTRK ∝
N∏
n=1

√√√√m2
t,nΣ2

x,n + Σ2
y,n

m2
t,nΣ4

x,n + Σ4
y,n

exp

{
−1

2

[
yn − yt,n −mt,n(xn − xt,n)

]2
m2
t,nΣ2

x,n + Σ2
y,n

}
. (4)
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Fig. 1: Left: Illustration of the geometry of the TRK statistic. Data point centroid is at (xn, yn) (point O), with convolved widths (Σx,n,Σy,n). Model curve

yc(x;ϑm) is tangent to the convolved error ellipse at tangent point (xt,n, yt,n) (point T ). Red line is the linear approximation of the model curve, with slope

mt,n = tan θt,n. Blue line indicates the rotated coordinate axis un for the TRK statistic, perpendicular to the vn axis. Right: Flowchart of the scale

optimization algorithm.

Invertibility and Scalability of the TRK Statistic

A desirable property for any 2D statistic is invertibility, i.e. that if fitting y vs. x to a model yields a curve
yc(x), then fitting x vs y yields the inverse curve xc(y) = y−1

c (x). In the Bayesian formalism, a statistic is
invertible if fitting y vs x and x vs y gives the same likelihood [5]. Now, consider the well-known Pearson
Correlation Coefficient R2. One usage of R2 is to quantify the invertibility of a statistic [5]. In the case of a
linear model with slope m, for example, you have that R2 ≡ myxmxy, where myx is the slope of the model fit
with y vs. x, and mxy is the same but for x vs y. As we show in [4], it turns out that the TRK statistic is

completely invertible; it follows that for fully invertible statistics like TRK, R2 = 1.

Another important behavior to have in a statistic is scalability, which means that multiplying all y data values
by some positive s should give the same fit for any s, i.e. the likelihood should be unchanged. As we show in
[4], the LTRK is not invariant to a change of s. However, we have created an algorithm that determines the
optimum scale s0 that yields the best fit, effectively mitigating the non-scalability of LTRK. First, we need some
sort of new correlation coefficient R2

TRK to compare TRK fits on different s for a given model and dataset, such

that the closer the fits are to one another, the higher this R2
TRK will be. R2

TRK is a measure of the variance

of the TRK statistic’s predictions under a change of s; in the linear case, this means that R2
TRK = 1 if the

two fits have identical slope, and R2
TRK = 0 if the two fits have orthogonal slope. So, in the linear case, R2

TRK is
a function of the difference in said slopes; this generalizes nicely to the nonlinear case using the aforementioned
tangent slopes mt,n [5], which we use to define

R2
TRK, linear ≡ tan2

(
π

4
− |θc − θd|

2

)
R2

TRK, nonlinear ≡
1

N

N∑
n=1

tan2

(
π

4
−
∣∣θt,n;c − θt,n;d

∣∣
2

)
(5)

where given two scales c and d, θc = tan−1mc (the linear fit slope angle from scale c), θt,n;c = tan−1mt,n;c
(the nonlinear fit tangent point slope angles from scale c), and θd & θt,n;d are defined similarly (see Fig. 1 left).

Scale Optimization and Model Distribution
Fitting Algorithms

R2
TRK has been defined as a way to compare fits done at different scales; now, we present an

algorithm to determine the optimum scale s0 for fitting. Consider the limiting behavior of TRK
fits as s→ 0 and s→∞, which correspond to“extreme” scales a and b (respectively) that indicate
the minimum and maximum scales such that the TRK fit remains physically meaningful. This is
because at s = a, the TRK fit will force σx → 0, and at s = b, σy → 0, as σx, σy < 0 would be
unphysical [5]. From this, we find that s0 will then satisfy

R2
TRK(a, s0) = R2

TRK(s0, b) ≡ R2
TRK ⇒ R2

TRK(a, s0)−R2
TRK(s0, b) = 0, (6)

where the arguments of R2
TRK are the two scales being evaluated (c and d in equation (5)).

In practice, we obtain a by stepping σx vs s until σx = 0 is reached using the well known“amoeba”
simplex minimization algorithm of Nelder and Mead, with b obtaining analogously by minimizing
σy. Then, we minimize (6), right, with respect to s0 to obtain s0 with the same method. To

obtain σx or σy at some s, we use another nested simplex to minimize −2 lnLTRK (analogous to

minimizing the “regular”χ2 value) with respect to (ϑm, σx, σy) (see Fig. 1, right).

Given some optimum fitting scale s0, in order to perform the fit and generate probability dis-
tributions of the model parameters, we use a Markov Chain Monte Carlo method to properly
explore the parameter space of the model. Specifically, we sample the joint posterior distribution
of (ϑm, σx, σy) using the likelihood LTRK (4) and any priors (see (1)), and use this generated
histogram to obtain the marginalized probability distribution of each model parameter.

Preliminary Results

Shown in Fig. 2 are preliminary fits done on relationships between parameters describing empirical
fits [1][2] to the observed spectral extinction by dust of stars in the Milky Way and Magellanic
Clouds.
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Fig. 2: Left: observed BH vs. c2 data [3][6] fitted to a smoothly broken linear model distribution and Right: observed c1 vs. c2 data [3][6]

fitted to a linear model distribution [5][1][2]. Shaded regions indicate the 1-, 2- and 3-σ slop envelopes of the model distribution.
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